2017

m

E EA

F=0

i
o
fol

Performance Evaluation between Hive on MapReduce
and Spark SQL with BigBench and PAT

Van-Quyet Nguyen, Kyungbaek Kim
Dept. Electronics and Computer Engineering, Chonnam National University
E-Mail: quyetict@utehy.edu.vn, kyungbaekkim@jnu.ac.kr

Abstract
Big data systems have been proposed to address the challenges of big data such as collecting, storing, and
analyzing data. Recently, Hive has been the most popular data warehouse for the big data systems by
supporting HiveQL, which is compiled into MapReduce jobs executed on Hadoop; meanwhile, Spark SQL has
emerged as a leading big data framework by using in-memory based distributed computing. There are several
studies have been performed to evaluate these two frameworks and showed that in most cases Spark SQL is
faster than Hive on MapReduce, but in some cases related to joining large tables Spark SQL is slower than
Hive on MapRedue. Recently the latest version of Spark SQL has many improvements which can provide
better performance of handling SQL queries such as catalyst optimizer. In this paper, we present the new results
of performance evaluation between Hive on MapReduce and the recent Spark SQL on our big data system by
using a benchmarking tool, called BigBench, and performance analysis tool (PAT). Our experiments illustrate
that the recent Spark SQL outperforms Hive on MapReduce with all of 30 BigBench queries. Moreover, we
observed that Spark SQL consumes less network traffic and keeps higher utilization of memory usages than

Hive on MapReduce.

1. Introduction

Big data systems have been designed in order to deal
with a huge generated data from a variety of aspects in our
life such as network services, agriculture development, and
scientific research areas [1]. These systems face challenges
of collecting, storing, and analyzing big data. During
the last decade, Hadoop [2] has been the most popular
framework for big data processing. It provides a parallel
computation model MapReduce [3] and Hadoop distributed
file system (HDFS) module. However, the MapReduce
programming model requires developers to write custom
programs which are hard to be maintained and reused. To
simplify storing and accessing big data, Hive [4] is
proposed to support queries expressed in a SQL-like
declarative language, HiveQL., which is compiled into
MapReduce jobs executed on Hadoop.

Recently, another big data framework, Spark [5] has
emerged as a leading distributed computing framework for
real-time analytics with memory-oriented architecture and
flexible processing libraries. In which, Spark SQL is a
component on top of Spark Core for processing structured
data. It reuses the Hive frontend and metastore giving full
compatibility with existing Hive queries. In our work, we

I

ol

H
[>

I

ISSN 2287-4348 OLEOICI O

f!
Jon
fol

| & PR MRHHEE] 2017EHE EHE =S =28

investigate in evaluation of the two big data engines’
performance: Hive on MapReduce and Spark SQL.

The characteristics of big data (i.e. volume, velocity,
variety and veracity) not only made the design and
implementation of big data systems to be the complex but
also was difficult in evaluating these systems. Therefore,
big data benchmarks have been developed to evaluate and
compare the performance of big data systems and engines
[6]. BigBench [7] was proposed as the first end-to-end
benchmark for big data offline analytics. It supports
evaluating both Hive on MapReduce and Spark SQL.
Ivanov et al. [8] has evaluated Hive and Spark SQL version
1.4 with BigBench which the 8 queries from group of 14
pure HiveQL queries run faster on Spark SQL than Hive on
MapReduce, while other queries were executed slower
because of joining issue.

Currently, the last stable version of Spark is 2.1 which
has many improvements in the Catalyst optimizer for
common workloads in of Spark SQL. Spark 2.X, which
used for common operators in SQL; and DataFrames via a
new technique called whole stage code generation, has a
substantial 2 to 10 times performance speedups comparing
to Spark 1.X. In this paper, we conduct performance

263 page

evaluation of Hive on MapReduce and Spark SQL 2.1 by
using BigBench. To understand better about the differences
between these two engines, we use a performance analysis
tool called PAT to capture the resource utilization metrics.

2. BigBench and PAT
2.1 BigBench

BigBench is developed to evaluate and compare the
performance of big data systems. It consists of two major
components: a data model for synthetic data generator and
a collection of workload queries.

There are 3 categorized parts of the data model:
structured, semi-structured, and unstructured one. To
generate the data, an existing Parallel Data Generation
Framework (PDGF) is used with a large range of scale
factor. It can scale the data to large volumes by a scale
factor from 1 to 1000000 (1 scale factor equals 1 GB).

The workloads are major parts of BigBench which
include 30 business queries. These were made underlying
business questions relating online shopping areas, such as
marketing; merchandising; and supply chain. The
workloads were made to be sure that different algorithms
(classification, clustering, etc.), which use three different
data types, had been implemented, and such queries can be
evaluated by Hive on MapReduce or Spark SQL.

2.2 Performance Analysis Tool (PAT)

Although BigBench
evaluation of big data systems, but it only provides the

supports the performance
response time of each query after evaluation is finished. To
support measuring resource utilization metrics of the big
data system, we used PAT running simultaneously with
BigBench during the time of evaluating the queries. For
each query executed on MapReduce/Hive and Spark SQL,
CPU utilization; disk input/output; memory utilization and
network input/output are provided.

PAT is enabled to deploy on a master/slave system. It
consists of two main modules: collecting data and post-
processing. For the former one, PAT master performs
installing scripts to slaves and start measuring the resource
utilization on each slave. Next, PAT master executes a
command which contains a script to run BigBench queries.
Finally, the resource utilization information is stored in
each slave. For post-processing module, PAT collects all
files which contain resource utilization metrics from all
slaves to master, then performs extracting and averaging
each kind of metrics. The measurements of the utilization
metrics are depicted as graphs to show their distribution

over the query's runtime.

ISSN 2287-4348 St ADIEDICIOES & S XHE S 2017EHE EHE=USE =28

Master

PAT

PAT configurations

CMD_PATH: runQuery.sh PAT Results

PAT scripts

cpustat, iostat,

netstat, memstat Process & generate results

Copy PAT scripts t? slaves @) Collect all results
from slaves

1
3 .
Slave 1 Run BigBench queries Slave n
on Big Data System

@. Start measurin, 4 performance metrics ‘ |
" and save into P{\T result folder |

cpuy, io, cpy, io, cpu, io,
. mem, net mem, net mem, net

/tmp/PAT_Result /tmp/PAT_Result /tmp/PAT_Result

Figure 1. Running BigBench with PAT

2.3 BigBench queries execution with PAT

To measure resource utilization during evaluating each
BigBench query, we execute the query from PAT.

Figure 1 depicts the process of executing BigBench
queries with PAT and getting the resource utilization of the
big data system for evaluating each query. For evaluating
each BigBench query, the process includes five steps as
follows.

Step 1. we first start PAT collecting data module by
installing PAT scripts to slaves.

Step 2: once PAT scripts are installed on a slave; they
will start measuring resource utilization of that slave.

Step 3: After starting resource utilization measurement,
PAT master will execute a shell file “runQuery.sh” which
contains a command running a BigBench query. By this
way, master submitted MapReduce (or Spark) jobs to run
on the big data system. Once the BigBench query
evaluation is finished, the response time will be returned,
and each slave will generate its PAT results into CSV files,
then go to next step.

Step 4: Run PAT post-processing module on master to
collect PAT results from all slaves.

Step 5: PAT combines all results to compute and
generate final PAT results, which consist of graphs
showing the average of resource utilization of the system
for a BigBench query.

3. Performance Evaluation

3.1. Evaluation Settings

To evaluate Hive on MapReduce and Spark SQL, we
deployed both Hadoop and Spark on five machines: one
machine for master node, and four others for compute
nodes [1]. Each machine has 4 CPUs and 16GB of RAM.
The main configuration settings of our big data system are
shown in Table 1.

264 page

100
_. 9%
d 80
s
£ 70
£ w
-
E s0
=
340
c
30
=
o 20
(-3
o i N
1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

BigBench Queries

Figure 2. Performance comparison of Hive and Spark SQL using 100GB dataset

8 & 8
© © ©o

Response Time (minutes)
-
g g

100 |
o -

1 2 3 7

'||I‘llllll-|l|ll|||lll-I
4 5 6 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

BigBench Queries

Figure 3. Performance comparison of Hive and Spark SQL using 500GB dataset

Table 1. The configuration settings of big data components

Component | Parameter Value
YARN yarn.nodemanager.resource.memory- 14GB
mb
yarn.scheduler.maximum-allocation-mb | 14GB
yarn.nodemanager.resource.cpu-vcores 4
MapReduce | mapreduce.map.java.opts.max.heap 2GB
mapreduce.reduce.java.opts.max.heap 2GB
mapreduce.map.memory.mb 4GB
mapreduce.reduce. memory.mb 4GB
Spark spark.executor.cores 3
spark.executor.memory 9GB
spark.driver.memory 1GB
spark.executor.instances 5
spark kryoserializer.buffer.max 256m
Hive hive.auto.convert.join false

Experiments were performed by using all of the 30
BigBench queries for both Hive on MapReduce and Spark
SQL. We evaluated these engines by using two different

ISSN 2287-4348 St ADIEDICIOES & S XHE S 2017EHE EHE=USE =28

scale factor (100GB and 500GB).
3.2. Experimental Results

This section presents the response time of the 30
BigBench queries running on Hive/MapReduce and Spark
SQL. Each query is executed twice then an average of the
response time is got. The performance comparison of Hive
on MapReduce and Spark SQL is depicted in Figure 2 and
Figure 3.

In both of two scale factors (100GB and 500GB), all of
30 queries on Spark SQL run faster than Hive on
MapReduce. Especially, with some queries (Q2, Q4, QS,
Q8, Q30) which contain “JOIN” clause among big tables or
relate to iterative algorithms, Hive on MapReduce
performed slower, for instance, Q4 being 10 times slower
than on Spark SQL with 100GB dataset.

4. Resources Utilization Analysis

In this section, we analyze the resource utilization of
Hive on MapReduce and Spark by considering the
measurements of the metrics: CPU, memory, and network
traffic. We measured the resource utilization of all 30

BigBench queries on 100GB dataset.

265 page

All-nodes average cpu

resolution - 1:1

%uUtilization
3
Memory(kB)

»
S

14
n

20}

0.0!

time(s)

All-nodes average cpu utilization

All-nodes averag_e Network 10

[
o

%Utilization
Memory(k8)

o
7

100 0.0

time(s)

(e)

resolution -
g-a — xkBis
12000} | txke/s
10000}
g 5000
£
% 6000)
5
@
4000
100 200 300 400 500 100 200 300 400 500 600 700
(b) time(s) (C) time(s)
le7 All-nodes average Memory | " All-nodes average Network |10
resolution - 1:1 | T resolution - 1:1
i — xkB/s
12000 ; H — txkB/s
10000}
2
€ 8000)
£
§ 6000
2
2000
o

100
time(s)

100
time(s)

(f)

Figure 4. Query Resource Utilization: (a)-(c) for Hive on MapReduce; (d)-(f) for Spark SQL

Overall, we observed that in the most queries, there is
no considerable difference on CPU utilization between
Hive on MapReduce and Spark SQL, but the utilization of
memory of Spark SQL is much greater than Hive on
MapReduce, and the amount of data transferring of Hive
on MapReduce over the network is much larger than Spark
SQL. For instance, we presented the results of resources
utilization of query 6, which were generated by PAT, as
shown in Figure 4. Both Hive on MapReduce and Spark
SQL utilized on average 45% CPU. However, Spark SQL
utilized much more of memory, which is 75%; while Hive
on MapReduce used only 35%. Especially, Spark SQL
used 50% of the memory for caching data. For network
traffic, we observed that Hive on MapReduce needs to
transfer a large amount of data over network which on
average 2.2MB/sec for both transmission and reception
bandwidth used, whereas the Spark SQL used average
0.8MB/sec.

5. Conclusion

In this paper, we presented the results of performance
evaluation between Hive on MapReduce and the recent
Spark SQL on our big data system by employing BigBench
and PAT. We also compared the performance and the

resources utilization of Hive on MapReduce and SparkSQL.

Our experiments proved that the recent Spark SQL
outperformed Hive on MapReduce on all of 30 BigBench
queries with higher resource utilization.

In our future work, we intend to optimize Spark SQL,
where rule-based and cost-based models for improving

ISSN 2287-4348 st=A0LEDICI0S S & &=

2

dXtAcHs 2] 20178 = EA

performance of joining big tables would be investigated.
Acknowledgement

This work was carried out with the support of
"Cooperative Research Program for Agriculture Science
and Technology Development (Project No. PJ01182302)"
Rural Development Administration, Republic of Korea.
This work was supported by the National Research
Foundation of Korea Grant funded by the korean
Government(NRF-2014R1A1A1007734).

References
[1] Van-Quyet Nguyen, Sinh Ngoc Nguyen, Kyungbaek
Kim. “Design of a Platform for Collecting and Analyzing

Agricultural Big Data.” JDCS vol. 18, no.1, 2017. pp. 149-
158.

[2] Hadoop, Apache.
http://hadoop.apache.org, 2017.

[3] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:
simplified data processing on large clusters.
" Communications of the ACM Vol.51, No.l, 2008.
pp.107-113.

[4] Thusoo, Ashish, et al. "Hive: a warehousing solution
over a map-reduce framework." Proceedings of the VLDB
Endowment Vol2, No.2, 2009. pp.1626-1629.

[5] Zaharia, Matei, et al. "Spark: Cluster Computing with
Working Sets." HotCloud 10.10-10, 2010 pp.95.

[6] Han, Rui, Xiaoyi Lu, and Jiangtao Xu. "On big data
benchmarking." Workshop on Big Data Benchmarks,
Performance Optimization, and Emerging Hardware.
Springer International Publishing, 2014.

"Apache Hadoop".

[7] Ghazal, Ahmad, et al. "BigBench: towards an industry
standard benchmark for big data analytics." Proceedings of
the 2013 ACM SIGMOD international conference on
Management of data. ACM, 2013.

266 page

